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Abstract
Biaxial nematic (Nb) liquid crystals are a fascinating condensed matter phase that has baffled,
for more than thirty years, scientists engaged in the challenge of demonstrating its actual
existence, and which has only recently been experimentally found. During this period computer
simulations of model Nb have played an important role, both in providing the basic physical
properties to be expected from these systems, and in giving clues about the molecular features
essential for the thermodynamic stability of Nb phases. However, simulation studies are
expected to be even more crucial in the future for unravelling the structural features of biaxial
mesogens at the molecular level, and for helping in the design and optimization of devices
towards the technological deployment of Nb materials. This review article gives an overview of
the simulation work performed so far, and relying on the recent experimental findings, focuses
on the still unanswered questions which will determine the future challenges in the field.

(Some figures in this article are in colour only in the electronic version)
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Introduction

Biaxial nematic (Nb) liquid crystals (LC) are nematics
where the mesogenic molecules organize with two mutually
orthogonal directions of preferential alignment (directors),
while keeping a uniform distribution of centres of mass (see
figure 1). The principal director n is typical of uniaxial
nematics (Nu), while the secondary director m is specific to
biaxial systems which then behave optically as macroscopic

trirefringent materials, i.e. with three different refractive
indexes.

The quest for a truly thermotropic Nb has been aptly
named ‘the holy grail’ [1] of LC since it has fuelled
experimental and theoretical research for more than 30 years,
starting from the seminal theoretical papers of Freiser [2]
and Straley [3]. This is an interesting scientific case since
by relying on idealized models the theoretical predictions
first, and later on the computer simulations, have paved the
way for the difficult task of actually synthesizing molecules
with the desired mesogenic behaviour. While theoretical
investigations of LC usually lag behind the discoveries of
clever and imaginative synthetic chemists, the specific case of
Nb is quite remarkably the opposite. However, it should be
pointed out that neither theory nor simulations have yielded a
specific molecular design but rather have provided reassurance
on the Nb not being a priori forbidden. The Nb phase
was not the only ‘missing link’ in the class of thermotropic
LC organizations, and as a side comment we also quote the
ferroelectric nematic among the elusive phases predicted by
theory [4] and computer simulations [5] which is yet an open
challenge on the experimental ground. As we shall discuss
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Figure 1. Detail of a Nb phase obtained from the MC simulations of biaxial GB ellipsoids of [53], and showing the principal n and secondary
m directors. The two snapshots are relative to the same sample observed along l (plates (a), and (b)), and along m (plates (c), and (d)).

later, part of the elusivity of Nb may be due to the fact that many
of the molecular features that favour a biaxial arrangement of
the molecules in the fluid nematic also favour their packing in
the competing smectic or crystalline biaxial phases.

The motivations for this search have certainly been
widespread, ranging from purely academic interest in
an unsolved scientific problem to the potential usage of
these materials in faster displays, where in principle the
commutation of the secondary director should give lower
response times compared to the conventional twisted nematic
and ferroelectric smectic devices.

At the time of writing a few instances of stable
thermotropic biaxial nematics and their characterization [6–10]
have been reported. The papers of Luckhurst [11] and
Praefcke [12] and the book of Chandrasekhar [13] also give
a critical account of the early synthetic attempts, while
assessment of the more recent achievements can be found
in [14]. These experimental findings are now fuelling a target
oriented research towards other mesogenic compounds, and
the implementation of envisaged technological applications. It
should be noted anyway that the experimental identification
of Nb phases is so difficult that an active debate that includes
challenging published results [11, 15, 16] has taken place, and
to some extent still is [17]. The role that confinement, external
fields and boundaries [18], or sample preparation [19, 20] may
play in determining the actual observed biaxial behaviour is
also questioned. While ordinary Nu are typically formed by
elongated (calamitic, or rod-like), or squashed (discotic, or
disc-like) mesogens, what molecular shape is more conducive
towards Nb behaviour is far from obvious.

While the search of Nb formed by rod-like and bent-
core (boomerang) molecules has been actively pursued, the
actual existence of such phases also from disc-like mesogens as
predicted by theoretical models [2, 3] and simulations [21–23]
is still an open question, and has received little attention from
the point of view of chemical synthesis. One possibility that
has been suggested [24] is that of combining the properties of
rods and discs. The simplest possibility is that of mixing them,
but is has been found by theory [25] and experiment [26] that
these mixtures tend to phase separate. A recent experimental
paper by Apreutesei and Mehl [27] challenges the past
modelling work in view of considering the role of flexibility
and attractive interactions. Even though LC phase transitions

can be driven by entropic effects [4], the detailed balance of
contributions leading to the formation of specific organizations
also includes energetic factors arising from attractive–repulsive
interactions between molecules.

The chemistry of synthesized mesogens has been even
more far-reaching in scope than theories, and besides organic
compounds with a rigid aromatic core and terminal flexible
alkyl spacers, the ingenuity and rational design of synthetic
chemists [28–30] has also considered as candidate Nb

mesogens: dendrimers, silicon organic, and metallorganic
coordination compounds [31], to name a few.

This paper reviews computer simulations of Nb, and
it is fair to say that the field of computer simulations
of LC systems has now reached a well established state.
Simulations allow one to draw direct relations between specific
molecular properties and macroscopic mesogenic behaviour,
and to study the spontaneous formation of liquid crystalline
phases, characterize their structure, and determine anisotropic
properties and responses to external fields. Furthermore,
computer simulations automatically account for the n-body
correlations in condensed phases, and as such are useful for
validating the predictions of theories. We should recall, for
instance, that the original predictions for the existence of
Nb [2, 3] were based on a simple mean field theory, which
is known to make rather large errors in determining phase
boundaries. The progress in the field encompasses all classes
of lattice, coarse-grained, molecular, and atomistic models,
and has been thoroughly reviewed in recent years [32–35],
and also presented in NATO schools [36] and workshops [37].
This manuscript relies on these general works and focuses
on the specific aspects of simulating Nb systems, which have
only partly been discussed in the previous reviews. Section 1
contains a few highlights to the most recent synthetic and
experimental findings related to the search for Nb phases. The
order parameters used to characterize the biaxial ordering are
presented in section 2 along with theoretical models, while
the principal potentials used for Nb systems are described in
section 3. The remaining sections are specifically devoted
to simulation results, and are organized according to the
symmetry/structure of the simulation models. Section 4
deals with systems with spins and single-site particles of D2h

symmetry. Multi-site potentials for molecules with symmetry
C2v or lower, and atomistic models are treated instead in
Section 5. The rod–disc mixtures, which are also candidates
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Figure 2. Phase diagram, with respect to the dimensionless density
and aspect ratio, from the theoretical spheroplatelets model of [38].
First-and second-order equilibrium curves are plotted as continuous
and dashed lines. Coexistence regions are shaded. (Adapted from
figure 4 of [38].)

for Nb systems, but still lack conclusive confirmation or
disproof, are discussed in section 6. Some concluding remarks
close the review.

1. Experiments

From a purely thermodynamical point of view, the most fre-
quent experimental scenario with (virtually) biaxial mesogens
is that upon cooling the Nu phase, the free energy of the under-
lying smectic/columnar becomes lower earlier than that of the
Nb phase, which is consequently not observed [38] (see fig-
ure 2). The quest for the Nb phase has then been a synthetic
(and modelling) attempt of either destabilizing smectic phases,
or stabilizing the Nb phase (or both), in such a way that the Nb

becomes the equilibrium phase over a finite temperature range.
In this respect theoretical models based on purely orientational
potentials and lattice simulations are not haunted by the for-
mation of a competing layered or crystal phase before a Nb

becomes thermodynamically stable, since they do not consider
positional degrees of freedom (see [38] for an exception). This
has been turned into an advantage for the identification of the
intrinsic molecular properties (e.g. shape anisotropy) relevant
for the stabilization of an overall Nb organization, and for effi-
ciently mapping phase diagrams.

It should be noted that our description of Nb phases
in terms of a locally uniform distribution of the secondary
m director might be an exception in real systems. Some
evidence from experimental measurements and computer
simulations [39], and theoretical models [18] is pushing
forward a different picture of what the standard Nb phase
might be. According to these sources, biaxial or even
polar cybotactic clusters might be the most common signs
of Nb phases, and the long-range biaxial ordering would
be induced by external perturbations (e.g. a field), surface
anchoring [40], or shear stress [31]. One of the questions which
still awaits an answer is therefore if the observed biaxiality
is an intrinsic property of the nematic fluid or instead, as
pointed out by Vanakaras and Photinos, a gigantic response

of biaxial cybotactic clusters to the surface anchoring or
external field [18]. According to this picture, the discordant
measurements of phase structure for claimed Nb might also
have originated from the boundary conditions typical of each
experiment, and the ensuing different degrees of alignment of
biaxial clusters. These issues are also related to the observation
of Nu phases with cybotactic clusters of Torgova et al [41], or
the spontaneous segregation into chiral domains reported by
Görtz and Goodby [19] and Bruce and coworkers [20]. For
this latter example, the formation of organized supramolecular
structures seems to take place above the ordering transition,
and it also depends on the sample history, hinting at a kinetic
rather than thermodynamic effect.

The experimental identification of biaxiality has always
proved to be fairly difficult [16, 42, 43], and still does
because of the small magnitude of the transversal orientational
ordering, and the necessity of filtering out the possible
perturbations arising from the laboratory setup and anchoring
conditions [43]. Actually, this is an additional hurdle to
cope with for those scientists trying to characterize potentially
Nb systems. As a matter of fact, most claims of Nb

phases published earlier than 2004 seem to have been caused
by deceptive experimental evidence, later challenged by
independent measurements of different anisotropic properties.

The first convincing thermotropic biaxial nematic phase
was jointly reported in year 2004 by Kumar, Samulski
and coworkers [6–8] from bent-core mesogens based on a
mesogenic oxadiazole core [6] with lateral substituents. The
phase has been further characterized by x-ray [7, 44], polarized
microscopy, conoscopy, and deuterium NMR [8], and also
by polarized Raman spectroscopy [45] providing independent
experimental evidence of the Nb organization. The
interpretation of these results has anyway been questioned [17],
but an answer from the authors [46] dismissed the doubts
raised. Even if the Nb for these mesogens occurs at
high temperature (≈200 ◦C) these molecules have opened
up the search for other systems forming Nb phases under
operating conditions closer to room temperature, as needed
for standard technological applications. Kumar and coworkers
have reported another class of rigid bent-core mesogens, with
aperture angle of 90◦ [47], which appear to also form Nb

phases.
This thermotropic Nb behaviour is far from being the

common one for bent-core mesogens, which are often devoid
of a Nu phase. Even molecules with a chemical structure
very similar to that of the compounds studied by Kumar and
Samulski do not have a Nb phase but display other interesting
properties, such as the formation of nematic phases with
cybotactic clusters [41] stable over a quite wide range of
temperatures.

Besides the bent-core-shaped mesogens, in the same
year 2004, a novel class of Nb based on organo-siloxane
tetrapodes was found by Mehl, Vij and coworkers [9]. These
thermotropic systems have been thoroughly characterized by
measuring the anisotropy of infrared absorbance, with the
addition of conoscopic and textural imaging under polarized
light [9], and the temperature dependence of the averaged
quadrupolar coupling constant of a deuterated 8CB solute
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probe by deuterium NMR [10]. Such tetrapodes are quite
complex and for the time being represent a challenge for a
computer simulation aimed at understanding the molecular
origin of their Nb phase, especially in relation to their high
flexibility which makes it difficult to define their shape and
interaction anisotropies in terms of simple models.

Severing and Saalwächter [48] have also given evidence
of a new class of Nb LC polymers with lateral mesogens.
This is a subsequent development after the seminal paper of
Hessel and Finkelmann [49]. Also new asymmetric bent-
core mesogenic compounds forming Nu and Nb phases have
been reported [50, 19]. The differential scanning calorimetry
measurements for these systems support the theoretical [51]
and computer simulation [52, 53] prediction of a second-
order transition from Nu–Nb. Also for organo-siloxane
tetrapodes [9] quite accurate calorimetric experiments could
not detect discontinuities across the Nu to Nb transition [54].

Nb phases open the possibility of designing new bistable
devices with a faster response than those based on Nu,
because the characteristic switching times of the principal
and secondary directors are expected to be very different.
The dynamics for the electro-optical commutation processes
of a Nb phases when confined between planar plates has
been measured by Lee et al [55], and this is the first
experimental investigation studying the issues related to
switching experiments of Nb phases (also see the comment
of Stannarius [175]). Other experimental studies probing
biaxial bistability have been performed, for instance the time
resolved characterization of the commutation of a nematic LC
cell submitted to a strong electric field (to induce biaxiality)
between two topologically distinct textures [56], or with
covalently bonded rod- and disc-like mesogens [40]. In spite
of these results, the devising of efficient bistable Nb devices
relying on the switching of the secondary director might not be
easy, and a significant amount of experimental and computer
modelling work still has to be done.

2. Order parameters and theories

The anisotropic properties of Nb phases are expected to
arise from a long-range degree of orientational ordering
along two orthogonal directions, the principal n and the
secondary m directors, while molecular centres of mass have
a random distribution in space. The quantitative assessment
of this organization is conventionally made by measuring
(or computing) suitable orientational order parameters. The
symmetry analysis of the D2h Nb phases identifies a set of four
different second rank order parameters that can be used to fulfil
the task.

Unfortunately, there is no universally adopted convention
about the definition and notation of such order parameters.
Over the years a number of equivalent sets have been used,
and the paper of Rosso [57] gives a quite complete list
of the notations employed for these order parameters, and
is certainly useful in decoding the various conventions and
comparing the published findings. The two most popular
definitions are those based on a Cartesian representation of the
order matrices [22, 58], and those using symmetrized Wigner

matrices [21]. The first set arises from a purely mathematical
modelling of the alignment process, and has the (nice) feature
that all order parameters range between 0 (no ordering) and
1 (complete ordering). The second definition originates from
the formal description of static physical observables (e.g. from
NMR, Raman, or fluorescence depolarization measurements)
obtained from the experimental characterization of LC phases.
This formulation relies on an irreducible tensors approach [59],
where the order parameters are average values of the Wigner
rotation matrices transforming from the laboratory to director
frame (and vice versa). The two sets of order parameters are
equivalent and mathematical relations convert from one to the
other. We quote here the second kind of definition, using the
scalar products between molecular and director frame axes to
identify rotations. The equivalent definition in terms of Euler
angles can be found in [21]. The Wigner matrices symmetrized
for the D2h group of a Nb phase are

RL
m,n = 1

4δm,evenδn,even[DL∗
m,n +DL∗

−m,n +DL∗
m,−n+DL∗

−m,−n ]. (1)

The order in a Nb phase, and the mean values of second
rank tensorial observables, can be characterized with the
following ensemble averages

〈R2
0,0〉 = 〈 3

2 (z · n)2 − 1
2 〉, (2)

〈R2
2,0〉 =

〈√
3
8 [(z · l)2 − (z · m)2]

〉
, (3)

〈R2
0,2〉 =

〈√
3
8 [(x · n)2 − (y · n)2]

〉
, (4)

〈R2
2,2〉 = 〈 1

4 [(x · l)2 − (x · m)2 − (y · l)2 + (y · m)2]〉, (5)

where l is the third axis of a (right-handed) Cartesian frame
defined by the first two. The molecular axes are instead x, y,
and z.

Typical ranges for these order parameters in models and
simulations of Nu and Nb phases are approximately [0.4, 0.8]
for 〈R2

0,0〉 and [0.1, 0.3] for 〈R2
2,2〉 (see [23] and figure 9 for an

exception). An example of temperature dependence of such
order parameters from a lattice simulation of a Nb is given
in figure 4. It should be noted that molecular models (both
hard and soft attractive–repulsive) usually overestimate these
values, especially at the ordering transitions. Experimental
values are usually much smaller, in particular for the observed
biaxialities 〈R2

2,2〉. Differently from molecular models
which offer at most semi-quantitative results, the atomistic
simulations with predictive capabilities [60, 34, 61] can
provide reliable estimates of such order parameters as well as
other macroscopic properties.

Whilst widely adopted, the sets of second rank order
parameters are not sufficient to characterize all LC phases,
either known or theoretically envisaged. For instance, bent-
core mesogens can form an extremely rich class of LC and their
proper characterization also requires third rank tensors [4].
Another counterexample is that of ferroelectric phases where
also first rank order parameters are relevant [62, 63]. More
generally, order parameters of rank higher than two are
necessary for characterizing the orientational distribution [58],
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Figure 3. Phase diagram, with respect to dimensionless temperature
T ∗ and shape biaxiality λ (see equation (6)), from the MC
simulations of [21] using a 10 × 10 × 10 square lattice and the
potential of equation (7). First and second-order equilibrium curves
are plotted as continuous and dashed lines. (Adapted from figure 2
of [21].)

and can be obtained from some experimental techniques.
For instance, polarized Raman spectroscopy has been used
to measure, for the first time, the order parameters of
fourth rank [45] in the Nb of [7, 8]. On a similar
level, the interpretation of experiments probing the molecular
reorientation in Nb (e.g. Raman, fluorescence depolarization,
NMR, dielectric relaxation), requires biaxial time correlation
functions, that have been evaluated by solving a generalized
rotational diffusion equation for both a uniaxial [64] or a
biaxial [65] molecule reorienting in a biaxial phase.

Prior to computer simulations, laboratory syntheses and
experiments, the theoretical models have provided the general
framework background information for all subsequent studies
on Nb systems. The fundamental proof of principle for the
possible existence of a thermotropic nematic phase with three
orthogonal optical axes, was given by Freiser [2] first, and
Straley [3] a few years later. By considering mesogens as
rigid board-like particles (sometimes called sanidic) it was
found that shape biaxiality λ (which is zero for cylindrical D∞h

symmetry, i.e. rod-like and disc-like particles) is the physically
relevant parameter connected to the excluded volume

λ = √
3/2

σx − σy

2σz − σx − σy
, (6)

where σx , σy , and σz are the particle dimensions. The mean
field models have phase diagrams where both rod- and disc-
like parameterizations show a transition from isotropic to Nu

(conventionally labelled N+ for calamitic, and N− for discotic
nematics, also see figure 3), followed by a second one to
Nb [66]. At the crossover point (also named the Landau point)
the molecular biaxiality λ becomes maximum, and the ordering
transition from isotropic leads directly to the Nb phase (see
figure 3). Since this state point is the one where the Nb

phases were expected to appear at the highest temperature,
the synthetic chemists focused toward assembling mesogenic
molecules with an effective shape biaxiality falling within this
region. At the Landau point biaxiality identifies the particles
as rod-like and disc-like at the same time. However, by using

Figure 4. The average order parameters 〈R2
m,n〉 (see

equations (2)–(5)), plotted against dimensionless temperature T ∗, for
a shape biaxiality λ = 0.3 of figure 3. (Adapted from figures 3 and 4
of [21].)

scaled particle theory and also taking into account translational
order Taylor and Herzfeld [38] have shown how in a fluid of
rigid spheroplatelets the range of existence for the Nb phase
becomes extremely narrow (see figure 2), or even vanishes,
when a smectic organization can form (as usually observed).

The effect of polydispersity or variable shape in
model single-component systems have been accounted for
by either considering a frequency-dependent polarizability
anisotropy [67], or with a Gaussian distribution of shape
biaxiality modelled as a quadrupolar mass distribution [68].
For two-component systems this effect is also quite relevant
since it may be a pathway for the stabilization of Nb phases
by preventing demixing in mixtures, and it has been studied
theoretically by Ratón and Cuesta [69] (see figure 6), and
experimentally by van der Kooij and Lekkerkerker [26].
Another interesting result is the paper of Biscari et al [70]
which discusses the possibility of inducing an Nb phase by
using curved surfaces with homeotropic anchoring. The
recent analysis of Vanakaras and Photinos [18] suggests
to us that our view of Nb phases should be widened to
include macroscopic uniaxial systems with a large transversal
response where a field-induced biaxiality could be used for
bistable devices. From this point of view, earlier mesogens
which have been dismissed as forming Nb phases might still
have interesting response properties due to the presence of
locally biaxial cybotactic clusters, especially if they possess
a negative dielectric anisotropy [18]. Over the last few
years other theoretical models and studies of Nb have been
published [71–76] showing how the field of Nb is quite lively
within the scientific community.

Models (and simulations) have been extensively used to
study distributions of the nematic directors and topological
defects [13, 77–79, 42, 80] in Nb. Theories for the
elastic [81–88, 41], flexoelectric [89, 90], and rheological [91]
behaviour of Nb have also been proposed. However,
computer simulations of the associated mesoscopic coefficients
(e.g. elastic constants, viscosities) for Nb have not been
performed systematically. These coefficients are also
necessary for the description of Nb fluids using mesoscopic
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models, or finite elements methods and further work is required
in the future for the reliable prediction of these relevant
quantities.

3. Model potentials

Several classes of potentials have been used in the attempt
to model samples of biaxial particles, and it is somewhat
mystifying that while most Nb computer simulations have
considered single-site D2h models it has instead been the class
of bent-core mesogens which provided the first experimental
evidence of a thermotropic Nb phase. In this section we
review the principal types of potentials in order of increasing
complexity, from lattice to atomistic models, postponing the
discussion of the simulation results to the following sections.

Due to their computational cheapness, lattice models were
among the first ones to be used by using suitable anisotropic
orientational potentials between neighbouring sites. Among
the many lattice models which have been considered in
computer simulations, the most studied so far is the biaxial
generalization to D2h symmetry of the Lebwohl–Lasher
potential [66]

U(ω12) = −ε0(R2
0,0(ω12) + 2λ0,2[R2

0,2(ω12) + R2
2,0(ω12)]

+ 4λ2,2 R2
2,2(ω12)), (7)

where ω12 is the relative orientation of neighbouring sites on a
cubic lattice. An equivalent expression can be cast in Cartesian
form as [52]

U(ω12) = −ε0(
3
2 Vz,z − √

6λ0,2[Vx,x − Vy,y]
+ 2λ2

2,2[Vx,x + Vy,x − Vx,y − Vy,x] − 1
2 ), (8)

where Va,b = (a1 · b2)
2, and the unit vectors a1, b2 are the

axes xi , yi , and zi of two neighbouring lattice sites. In the case
of dispersive interactions the model parameters λ0,2 = λ, and
λ2,2 = λ2 are both defined in terms of a biaxiality parameter
λ. Furthermore, both λ and ε0 are related to the anisotropy
of the polarizability tensor [66, 52]. This is a particular case of
the archetypal formulation of Straley [3], where the parameters
λm,n are independent and can be chosen to model more general
interaction schemes. For instance, the mesogenic properties for
a different choice λ0,2 = λ, and λ2,2 = 0 have been studied
theoretically and with MC simulations in [67, 75]. Lattice
models have been thoroughly studied and are now mostly
useful for investigating mesoscopic properties of fairly large
samples, such as topological defect distributions and optical
properties [92].

A second broad class of potentials used in simulations is
that of molecular models, either purely repulsive (e.g. hard
ellipsoids [93, 22], or hard spherocylinders [94–96]), or
attractive–repulsive (e.g. Gay–Berne [97]). These potentials
allow one to draw a clear link between specific molecular
properties, in particular shape and interaction anisotropies, and
collective mesogenic behaviour. For instance since the work of
Allen [22], the hard-ellipsoid fluid has been thoroughly studied
considering how the semiaxes a, b, and c, and the aspect
ratios a:b:c determine the phase diagram. Several off-lattice
soft potentials have been derived from the Gaussian overlap
model due to Berne and Pechukas [98]. The first one was

that of Ayton and Patey [99] who proposed a generalization
for describing purely repulsive soft biaxial ellipsoidal particles.
By reducing the thickness of a uniaxial 1:1:3 ellipsoid (which
as a hard particle was known to be devoid of a nematic phase)
to a 0.8:1:3, and then to a 0.4:1:3 aspect ratio, first a Nu and
then a Nb where found (although for a single state point).
Unfortunately the study of this model has been discontinued.

The most studied molecular systems are those belonging
to the class of attractive–repulsive off-lattice potentials
obtained by generalizing the Lennard-Jones (LJ) potential to
ellipsoidal shape. The standard model of this class is the
Gay–Berne (GB) [97]. The interaction between unlike biaxial
particles can be written as [100, 101]

U(r,ω1,ω2) = 4ε0ε(r,ω1,ω2)[u12(r,ω1,ω2)

− u6(r,ω1,ω2)], (9)

where u(r,ω1,ω2) ≡ σc/(r − σ(r,ω1,ω2) + σc), depends
on the anisotropic contact term σ(r,ω1,ω2) parameterized in
terms of the three axes σx , σy , and σz of the ellipsoid, and the
orientations ω1, ω2 for the molecules, and the intermolecular
vector r. The anisotropic interaction term ε(r,ω1,ω2) defines
the potential well depth and it is parameterized in terms of
the three axes σi , and three interaction coefficients εx , εy , and
εz defining the relative energy for the side-by-side, face-to-
face, and end-to-end configurations of a pair of particles [101]
(see figure 7). Three additional empirical parameters σc, μ,
and ν can be tuned to modify the width and depth of the
interaction wells. The constant ε0 defines the energy scale.
The contact term σ(r,ω1,ω2) approximates the geometrical
‘contact distance’ between two ellipsoids (see [102, 103] for
a discussion). A similar generalization of the GB potential
to non-homogeneous biaxial interactions is that of Cleaver
et al [104]. The issues concerning the approximation of
the contact distance for ellipsoids using the recipe of [98]
(i.e. σ(r,ω1,ω2)) have stimulated the proposal of additional
generalizations of the biaxial GB model such as the RE-
squared potential of Ejtehadi and Everaers [102, 105, 106],
which is based on Hamaker theory, and that of Paramonov and
Yaliraki [107] who have used the elliptic function approach
due to Perram and Wertheim [108]. Both biaxial [100, 101]
and RE-squared [102] versions of the GB potential have
recently escaped the realm of in-house simulation codes to
be included into the popular molecular dynamics engine
LAMMPS [109, 110] released under the open-source licencing
scheme.

These single-site potentials were initially used to simulate
mesogens with board-like symmetry, but were also combined
to model lower symmetry molecules (e.g. boomerang shaped)
in terms of multi-site objects as described later on. In this
class of molecular potentials little attention has been given to
including and understanding the role of flexibility, probably
to keep the models as computationally cheap as possible.
We now recognize that these neglected contributions, when
taken into account, may also compensate for the unrealistic
density changes across ordering transitions which curse most
simulations of both hard and soft molecular models, and which
are not observed experimentally.

Atomistic potentials account for flexibility implicitly,
however, the complexity of candidate mesogens poses
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0

Figure 5. Phase diagram, with respect to the dimensionless
temperature T ∗ and shape biaxiality λ (see equation (6)), from the
theoretical model of [118]. First-and second-order equilibrium
curves are plotted as continuous and dashed lines. The tricritical and
triple points are indicated as a circle and a square. (Adapted from
figure 2 of [118].)

a challenge since this modelling requires computational
resources which have become available only in the past few
years. In this class of models the total potential energy is
broken down into a sum of intra-molecular terms describing
how the energy changes upon variations in bond angles and
lengths, conformational motions, and atomic positions, with
the addition of intermolecular terms giving non-bonding and
electrostatic interactions. A generic atomistic potential can be
written as

Utotal =
∑
bonds

Kr (r − req)
2 +

∑
angles

Kθ (θ − θeq)
2

+
∑
dihed

6∑
n=0

Vn[1 + cos(nφ + γ )]

+
i< j∑

atoms

{√
εiε j

[(
σi + σ j

2ri j

)12

−
(

σi + σ j

2ri j

)6]

+ qi q j

ri j

}
. (10)

The specific mathematical formulation of the additive
terms and the complete collection of coefficients K , V , σ , ε,
and atomic charges q define the force field.

Even if atomistic simulations can provide invaluable
details on specific systems, often hardly or not accessible
at all by experimental techniques, the task of correctly
reproducing phase transition temperatures for a given mesogen
is to date not trivial, and this is mainly due to the absence
of force fields specifically parameterized for the purpose.
Therefore, prior to performing atomistic simulations, a
necessary step is that of testing if the chosen force field is
adequate: for instance dihedral potentials should be checked
as the full conformational space often determines the phase
behaviour [111]. In addition, other force field terms may
need to be tuned to match relevant experimental observables
(e.g. density). If these optimizations are not sufficient (see
e.g. [112–115]), a long and computationally demanding re-
parameterization procedure is needed [116, 115]. We should

Figure 6. Phase diagram, with respect to the dimensionless number
density and mole fraction x of the rod-like mesogen, for a mixture of
polydispersed uniaxial rod- and disc-like boards with aspect ratios
1:1:5 and 5:5:1 from the theoretical model of [69]. First-and
second-order equilibrium curves are plotted as continuous and
dashed lines. Coexistence regions are shaded. (Adapted from
figure 2 of [69].)

also notice that atomistic potentials have been successfully
used only recently [61] because no convincing Nb had been
reported earlier and molecular structures to start with were
not available. From this point of view computer simulations
of lattice and molecular models have been invaluable for
studying the fundamental properties of Nb systems prior to
their experimental discovery.

4. Single-site models

The simplest computer simulation models for Nb are the
single-site ones where the mesogenic system is described
by a collection of weakly interacting potential centres with
orientational degrees of freedom. The interaction sites can be
either fixed on a lattice or free to move (off-lattice), and can
thus represent an uniformly oriented molecular domain or a
single molecule.

Lattice simulations have been the first ones to provide
evidence of a spontaneous thermotropic Nb ordering, starting
from the MC computer simulations of Luckhurst and
Romano [117] who used the potential of equation (7). The
complete phase diagram and the temperature dependence of the
four second rank biaxial order parameters has been obtained
by Biscarini et al [21] (see figure 3). These results have been
compared against theoretical mean field predictions to find a
semi-quantitative agreement between the two (see figure 4).
The transition from Nu to Nb has been predicted [51] and
simulated [52] with dispersive models to be of second order.
There are, in any case, theoretical predictions by Virga and
coworkers based on a mean field model that this behaviour
is not universal. Relaxing the parameterization constraints of
equation (7) two narrow regions of weak first-order transitions
between Nu and Nb, and between isotropic to Nb have
been found in correspondence of a nematic–nematic tricritical
point [67, 118, 72] in the proximity of the Landau point (see
figure 5). Recent dynamic light scattering measurements based
on organo-siloxane tetrapodes [119], and lattice computer
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simulations [120], support these theoretical models. Bates
and Luckhurst [121, 122], and Romano [120, 123–125] have
further simulated several generalizations of the model potential
of equation (7). Lattice models are computationally cheap,
and taking advantage of this, it is possible to simulate
extensively samples with (sub)-mesoscopic size, and large
enough to compute director fluctuations, topological defects
structure, and schlieren textures of confined systems or free
standing films. These are interesting properties because optical
microscopy (either orthoscopy and conoscopy) is often used
as a screening technique for quickly identifying LC phases,
Chandrasekhar [13, 77] predicted the two-brush defects to be
a signature of Nb phases, differently from Nu LC which are
characterized instead by four-brush defects. Chiccoli et al
[79, 42] have theoretically computed the free energy difference
between two- and four-brush defects, and produced optical
images from MC computer simulations of an Nb lattice model.
Such studies have outlined that the presence of topologically
stable two-brush defects is not a universal fingerprint of
Nb phases because their appearance is related not only to
the degree of biaxial orientational ordering but also to the
magnitude of the elastic constants. This is a clear example of
the usefulness of computer simulations in providing a possible
explanation for the earlier claims of Nb mesogens based on
deceptive optical measurements.

Moving to off-lattice potentials we quote the seminal MC
simulation of Allen [22] who mapped the phase diagram of a
model fluid formed by hard ellipsoids with three different axes
(aspect ratios ranging from 1:1:10 to 1:10:10). This was the
first simulation with full translational and rotational degrees of
freedom to compare against the results of theoretical models,
and it was a proof of principle that a Nb phase might be
thermodynamically more favourable than a smectic, or solid
one. For such hard particle model the formation of a Nb

phase is based on an entropic driving force related to the
excluded volume of ellipsoidal particles. Allen was able to
trace the phase diagram with respect to the shape biaxiality
finding calamitic N+, and discotic N− nematic phases, and also
conducted detailed simulations for the Landau crossover shape.
In a later work Camp and Allen [126] studied, with higher
accuracy, the phase diagram locating the transition points for
the prolate parameterization. The range of shape anisotropies
leading to biaxial nematic phases was found to be very narrow,
supporting the elusive character of this mesophase. Recently
McBride et al [127] performed additional Monte Carlo
simulations of the hard biaxial ellipsoids fluid studying the
reliability of the theoretical equation of state in predicting the
isotropic–nematic transition and finding fairly good agreement.

Repulsive off-lattice simulations have been useful for
studying the entropic effects stabilizing Nb phases. However,
hard particle models do not consider the attractive interactions
which are expected to be important in real Nb [61], and
which have been found to stabilize the Nb phase for aspect
ratios closer to those of conventional mesogens. For instance,
uniaxial hard ellipsoids and hard spherocylinders with aspect
ratios equal to or smaller than respectively 1:1:3 and 1:1:5
do not form nematic phases upon compression, while soft
attractive–repulsive ones do [32].

Figure 7. The dimensionless U ∗ = U/ε0 GB potential profiles for a
pair of biaxial ellipsoids in the face-to-face (curve a), side-by-side
(curve b), and end-to-end (curve c) configurations [100]. The
parameters σx = 1.4, σy = 0.714 and σz = 3 (all in σ0 units), and
εx = 1.7, εy = 1 and εz = 0.2 (all in ε0 units) are those of [53].
Empirical parameters μ = 1, ν = 3, and σc = σy . Dimensionless
distance r ∗ = r/σ0. (Adapted from figure 2 of [53]; we note that the
value εy = 1.2 given at page 5975 of [53] was misprinted, and
should be instead εy = 1.)

The effect of attractive interactions was first considered in
a MC simulations of biaxial ellipsoids [53] modelled with the
generalized GB potential [100, 101]. These simulations have
given hints about the competing role of shape and interaction
anisotropies in stabilizing the Nb phase, and have shown that
a suitably parameterized off-lattice system with attractive–
repulsive soft particles with aspect ratios 1.4:0.714:3, and
interactions 1.7:1:0.2, might form a stable thermotropic Nb

phase (see figure 8). The choice of opposite shape and
interaction biaxialities destabilizes the smectic phase, which is
normally observed below the uniaxial nematic phase whenever
both shape and interaction anisotropies are positive [13, 128].
The usage of side-by-side interactions stronger than those face-
to-face, i.e. giving a negative interaction biaxiality, produces
particles with a dual nature: rod-like from the point of view
of shape, and disc-like with respect to interactions [13] (see
figure 7). Virtual MD experiments [129] have been used to
estimate the switching times of the principal and secondary
director of this model Nb [130]. The reorientation of the
secondary director m has been found to be, on average, an
order of magnitude faster than that of n. This kind of direct
measurement of a response might be useful for screening the
technological suitability of Nb phases in displays and other
devices, since in virtual experiment the setup such as sample
shape, pair potential, anchoring geometry and strength, and
coupling to an external field can be controlled by design
without a prior knowledge of mesoscopic response coefficients.

A drawback of all molecular models is that it is not easy to
map an idealized potential with specific parameters into a real
molecular structure. For instance, in the case of the biaxial
ellipsoidal particles of [53], the stronger lateral interactions
may be obtained by synthesizing a mesogen with suitable
lateral substituents [28] giving weak bonding (e.g. hydrogen
bonding groups), or with a specific electrostatic charge
distribution. The practical realization of this prescription
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Figure 8. Average order parameters 〈R2
m,n〉 (plate (a)) from the NPT MD simulations of the model biaxial rod-like GB mesogen of [53], and

snapshot (plate (b)) of a Nb phase formed by 65 536 elongated biaxial GB ellipsoids at T ∗ = 2.8 and P∗ = 8, with 〈R2
0,0〉 = 0.78, and

〈R2
2,2〉 = 0.22. Sample viewed along the m mesophase director.

Figure 9. Average order parameters 〈R2
m,n〉 (plate (a)) from the NPT MD simulations of the model biaxial disc-like GB mesogen of [23], and

snapshot (plate (b)) of a Nb phase formed by 8192 squashed biaxial GB ellipsoids at T ∗ = 2.4 and P∗ = 8 with 〈R2
0,0〉 = 0.95, and

〈R2
2,2〉 = 0.27. Sample viewed along n mesophase director.

is in any case not straightforward. For instance Bruce
and coworkers [131] have ingeniously tailored metallorganic
mesogens, although without obtaining Nb mesogens.

Very limited experimental and theoretical work has been
done so far for disc-like Nb mesogens, possibly because to date
only a few systems have been experimentally found to form
a thermotropic nematic phase, the columnar one being their
most common anisotropic organization. In [23] a first attempt
to study, with MC computer simulations, the competition of
shape and interaction anisotropies for biaxial GB discs was
presented. A discotic Nb phase was found for GB particles with
opposite shape and interaction biaxialities, i.e. having face-to-
face pair interactions much weaker than those side-by-side (see
figure 9). The most striking result of these MC simulations was
that the columnar phase was completely suppressed in favour
of a nematic fluid stable over a quite wide range of temperature,
and for order parameter values much higher (〈R2

0,0〉 > 0.9)
than those typical of a calamitic nematic phase.

5. Multi-site models

Multi-site potentials allow one to model more specifically
the effects of molecular shape and interaction anisotropy of
mesogenic molecules. The range of simulated systems is
fairly large and goes from rigidly connected hard particles
to molecular models with charges, dipoles, and quadrupoles,
to fully atomistic models with internal degrees of freedom.
Asymmetric models have received little attention, even though
experimentally have been reported to widen the Nu temperature
range [19].

Among board-like models, the papers of Sarman
[132, 133] report MD simulations of systems formed by rigid
objects obtained by embedding from 8 to 11 repulsive GB discs
along a line, with aspect ratios similar to those of the hard
ellipsoids of Allen [22]. The compression of isotropic samples
of all four model particles gave a first-order transition to the
Nu phase (either calamitic N+, or discotic N−), followed by
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Figure 10. Average order parameters 〈R2
m,n〉 (plate (a)) from the NPT MC simulations of the model bent-core GB mesogen of [143], and

snapshot (plate (b)) of a Nu phase formed by 1000 three-site GB particles with two terminal dipoles at dimensionless temperature T ∗ = 3.5
and pressure P∗ = 10 and 〈R2

0,0〉 = 0.57, and 〈R2
2,2〉 = 0.03. Sample viewed from a direction perpendicular to the n mesophase director.

transitions to Nb. Sarman [134, 135] has also estimated some
viscosities using Green–Kubo relations and linear response
theory. This is the only computer simulation of a multi-
site molecular model reported so far to yield a Nb. In
spite of that, multi-site models have been extensively used
to study bent-core mesogens, but generally speaking most
of the simulations reported in literature do not provide Nb

(actually nematic phases are rather exceptional for such class
of molecules, and smectic LC are the typical organizations
observed experimentally and in simulations). Since more Nb

mesogens with bent-core shape may be found in the future, it
is nonetheless interesting to overview some of the published
simulation results.

The majority of published simulations for bent-core
mesogens are based on rigid models with two anisotropic sites
joined at one end. For instance, Camp et al [136], and Lansac
et al [137] have reported MC results for hard-core dimers
formed by two spherocylinders with aspect ratios 1:1:2, and
1:1:5. Both papers studied the phase diagram for various apex
(or aperture angles) finding Nu organizations for the larger
angles, and isotropic fluids of interlocked dimers for smaller
apertures.

Moving to attractive–repulsive potentials, similar results
have been obtained with the GB models simulated by
Memmer [138] and Neal and coworkers [139, 140] who
performed NPT MC simulations of rigid bent-core dimers
with aspect ratio 1:1:3 and various apex angles. The
isotropic to Nu transition temperature was found to decrease
when reducing the aperture angles. Even for this GB
model, the Nu phase disappeared for an intermediate 170◦
apex angle. Interestingly, close to the nematic–smectic phase
transition a spontaneous chirality symmetry breaking [141]
was reported [138, 139, 142] to produce organizations related
to those predicted by Lubensky and Radzihovsky [4], or
observed by Görtz and Goodby [19]. The presence of a
central transverse dipole [140] suppresses the Nu phase to
give transitions from isotropic to smectic phases, and this is
at variance with results from atomistic simulations (see later
on). However, two terminal tilted dipoles embedded into
the arms of a three GB bent-core model have been found

with MC simulations to stabilize the Nu phase with respect to
smectic ordering [143] (see figure 10). No Nb organizations
were observed for any of these systems. Interestingly, Clark
and coworkers [144] have studied a three-site zig-zag model
observing a rich polymorphism reminiscent of the dipolar bent-
core models.

The multi-site models of rigidly connected LJ spherical
sites simulated by Dewar and Camp [145, 89] produce results
comparable the other bent-core models, but in this case the
effect of a central transversal dipole seems to favour the Nu

phase [89]. A five-site bent model with terminal flexible chains
was also studied [89] to find that both smectic and Nu phases
disappear. The effect of flexibility on the phase diagram, even
though for linear chains, has been thoroughly studied instead
by Galindo et al [146] with Gibbs ensemble MC simulations
finding that the polymorphism is strongly affected by the non-
rigid model.

To date, the most relevant simulation of multi-site bent-
core mesogens has been that of Peláez and Wilson [61]
who have performed the first MD simulation of a real Nb

molecule [7, 8] using a full-atomistic potential including
electrostatic interactions (see figure 11). In particular, the
spontaneous ordering was observed cooling-down an isotropic
sample, and Peláez and Wilson have given evidence regarding
the formation of local ferroelectric domains in the Nb.
Atomistic computer simulations are invaluable since they
can help in studying some issues (e.g. flexibility), and the
detailed effect of electrostatic charges as computed from
ab initio calculations on specific molecules (see e.g. [147])
that would be difficult to tackle with theory or simpler
potentials. For instance, in [61] the same atomistic model
devoid of electrostatic charges (e.g. an overall transversal
dipole moment) does not give a Nb phase but, upon cooling-
down, a smectic one. This is again a confirmation that the
subtle balance of anisotropic shape and interaction anisotropy
is necessary in mesogenic molecules to stabilize the Nb phase.

The picture resulting from the published simulation work
is that there is no general agreement regarding the optimal
apex angle of bent-core mesogens for the stabilization of
Nu phases, since the results also depend on other specific
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Figure 11. Snapshot of a bent-core Nb phase from the MD atomistic
simulations of [61] showing the formation of ferroelectric domains
with opposite polarity. (Image courtesy of Professor Mark
R Wilson.)

model features. A certain bend seems to be necessary to
observe a Nu, but the useful range of apertures may be fairly
broad. A large apex angle generally favours the Nu with
respect to layered organizations, while small values have given
interlocked dimers (even though [47] reports Nb mesogens
with 90◦ aperture). Certain intermediate apex angles destroy
the Nu [136, 139, 140]. To provide a Nb phase a bent
molecular shape is not sufficient, and other interaction terms
(e.g. a suitable transverse dipole), or a certain amount of
flexibility may be necessary to lower the symmetry, and/or
the propensity to form ordered layers. To summarize, only
atomistic simulations have been successful so far, and the
lack of multi-site molecular models of Nb is a sign that we
still do not know what are the minimal molecular features for
obtaining these phases.

6. Mixtures

One of the possible pathways early recognized by Alben [24]
as a candidate for finding Nb systems has been that of using a
suitable mixture of rod- and disc-like mesogens fully miscible
over the whole phase diagram. The rationale behind this
strategy was that of creating a mixed nematic system where
molecular symmetries would promote the independent self-
alignment of the mesogens along two mutually orthogonal
principal directors (one for the rods, and the other for the
discs) producing a Nb system. This apparently simple picture is
deceiving as to date the only published example of Nb mixture
is not thermotropic but lyotropic [148], and even these findings
have been subject to discussion and challenges [149, 150]. To
our knowledge, no computer simulations have been conducted
on lyotropic systems, possibly due to their complexity, but
theoretical models strongly hint polydispersity [69], and rod–
disc shape interconversion [151] as possible mechanisms
underlying the Nb behaviour even for thermotropic mesogens.

In particular, the paper of Ratón and Cuesta [69] reports
theoretical phase diagrams showing stable Nb mixtures of
uniaxial board-like mesogens with 1:1:5, and 5:5:1 aspect
ratios (see figure 6), and a Gaussian distribution of shape.

In spite of the neatness of the suggestion of Alben [24],
the practical realization of a thermotropic Nb phase of mixed
rod- and disc-like molecules has always proved to be difficult
both on experimental [26] and modelling grounds [152–160].
The common reason behind this failure is that when both
orientational and positional degrees of freedom are considered
the ordered phases show a thermodynamic tendency to demix.

It is not surprising that one of the few computer simulation
successes has been that of lattice models, like those of Hashim
et al [161] where phase separation could not take place by
design. It should be noted anyway that when particle exchange
moves between the two distinct interpenetrated sub-lattices
were included, a phase separation also takes place in this model
system.

Similarly, almost all attempts made to simulate a biaxial
rod–disc mixtures with off-lattice models have lead to phase
separations as long as an ordering transition from the isotropic
(mixed) phase set in. The majority of studies have been
performed with hard particles, like the Gibbs MC simulations
of Allen, Frenkel and coworkers [25], where only extreme
aspect ratios (1:1:15 with 15:15:1, and 1:1:20 with 20:20:1)
appeared to be compatible with a mixed phase of rod- and
disc-like particles. Camp and Allen [162] have also simulated
fluid mixtures of hard uniaxial ellipsoids with smaller aspect
ratios 1:1:10 and 10:10:1 and composition 0.5 and 0.6. They
have observed I, N, and Nb, and but have not explored higher
density regions of the phase diagram to address the competition
between an Nb phase and demixing. One possibility to
overcome these difficulties would be that of enhancing specific
rod–disc interactions [152, 154]. The aspect ratios typical of
standard mesogens, when considered as hard rigid particles,
are predicted by all theoretical models to produce demixing.
This behaviour has been explained in terms of entropic
effects related to the excluded volume of the mesogens, and
their ratio [163, 164]. The mixed ordered state has higher
mixing and orientational entropies, while the separated phases
gain in translational entropy. As it turns out, for systems
without extremely large aspect ratios, the latter contribution is
dominant.

By using a theoretical model Camp and Allen [162]
predict a symmetric phase diagram with respect to mole
fraction, but forecast that using additional virial coefficients
this may become asymmetrical. This has been specifically
addressed by Vanakaras et al [165] who have studied, by
MC simulations and theory, phase separation in mixtures of
perfectly aligned hard boards with rod-like shape but different
aspect ratios. The idea the three authors propose is that
of disfavouring the smectic and crystal phases by mixing
particles with similar breadth and width, but incommensurable
lengths. This strategy also enhances miscibility and lowers
the minimum aspect ratio necessary to stabilize an Nb

phase. Another relevant result is that the most favourable
concentration for observing an Nb system is not the standard
equimolar, but instead a 0.3 mole fraction of the longer
mesogen (see figure 12).
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Figure 12. Phase diagram, with respect to the dimensionless reduced
density and mole fraction x of the longer mesogen, for a
two-component mixture of hard-body biaxial board-like particles
from the theoretical model of [165]. All equilibrium curves
correspond to second-order transitions. (Adapted from figure 3
of [165].)

Besides using specific rod–disc interactions, another
strategy for overcoming phase separation in mixtures may be
that of using molecules with both rod-and disc-like mesogenic
units joined by a flexible alkyl spacer (the so-called shape
amphiphiles [166]). Following the work of Fletcher and
Luckhurst [167], other molecular design concepts have been
explored [167, 168, 166, 169–171] obtaining Nu but not Nb.
So far, the mesogen with closest resemblance to the theoretical
concept of joined mesogens is the one of Kouwer and
Mehl [169]. Relying on this picture, Bates and Luckhurst [172]
have characterized extensively a lattice model with rods and
discs at the same sites (completely overlapped sub-lattices)
by using MC simulations. The effect of a flexible spacer
has been modelled via a coupling between the rod and the
disc at the same lattice site, to find from the simulations
that the shape of the two-component phase diagram is quite
modified by the strength of this interaction. Unfortunately,
this lattice model with overlapped sites can not account for
the segregation effects of rod and disc moieties observed
experimentally [171, 170] and which may be interesting
for other nanotechnological applications (although not for
Nb). Rod–disc dimeric systems have also been studied with
theoretical models [173], and experiments in presence of an
electric [40] or magnetic [174] field. In the case of [174] a
uniaxial discotic nematic was induced, while in [40] a field-
induced Nb phase was achieved.

Considering all the previous modelling work, the findings
of Apreutesei and Mehl [27] of completely miscible disc- and
rod-shaped mesogens in the nematic phase are quite important
since they are at variance with the theoretical predictions which
always doom the mixed phase with the nemesis of demixing.

Attractive–repulsive off-lattice models have received
small attention, and the question which choice of shape
and interaction biaxialities can prevent demixing still has
no answer. Also the effect of weak bonds between unlike
particles [154] and flexibility have not been studied in detail by
theory, and a model of miscible rod- and disc-like mesogens

with monodisperse shape distributions has never been put
forward.

7. Concluding remarks

The field of Nb phases still poses many unanswered
theoretical and practical questions, and besides experimental
investigations there is large scope for modelling and computer
simulations. Taking into account recent experimental results,
our current view of the Nb phase, mostly derived from early
theoretical and simulation models, might be too narrow and
idealized. Rather than considering as Nb only nematic LC
systems with spontaneous macroscopic biaxial ordering, we
might broaden the classification to also include overall uniaxial
systems with local biaxial or polar cybotactic clusters which
could be converted into a Nb by a suitable weak perturbation,
like a surface treatment or an external field.

If the nature of Nb organization is still not completely
unravelled, on the molecular side we still do not know exactly
what are the minimal features necessary to be accounted for
in model potentials for obtaining an Nb phase. Electrostatic
interactions, flexibility, and polydispersity are important
ingredients which, along with shape anisotropy, may help in
stabilizing Nb phases against freezing, layering or demixing.

Besides contributing in clarifying these issues, the future
impact of Nb computer simulations relies on their ability
in helping chemists to design candidate mesogens (e.g. by
using atomistic models), to predict LC properties prior to
the actual synthesis, and in contributing to the design of
model devices (e.g. with lattice and molecular models) in
view of a technological deployment of Nb materials. The
achievement of these ambitious goals will require improved
model potentials, predicting mesoscopic coefficients in bulk
and confined environments, and devising efficient procedures
for virtual computer experiments of responses.
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